{ "cells": [ { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "% matplotlib inline" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "import sys\n", "from numpy import NaN, Inf, arange, isscalar, asarray, array\n", "\n", "def peakdet(v, delta, x = None):\n", " \"\"\"\n", " Converted from MATLAB script at http://billauer.co.il/peakdet.html\n", " \n", " Returns two arrays\n", " \n", " function [maxtab, mintab]=peakdet(v, delta, x)\n", " %PEAKDET Detect peaks in a vector\n", " % [MAXTAB, MINTAB] = PEAKDET(V, DELTA) finds the local\n", " % maxima and minima (\"peaks\") in the vector V.\n", " % MAXTAB and MINTAB consists of two columns. Column 1\n", " % contains indices in V, and column 2 the found values.\n", " % \n", " % With [MAXTAB, MINTAB] = PEAKDET(V, DELTA, X) the indices\n", " % in MAXTAB and MINTAB are replaced with the corresponding\n", " % X-values.\n", " %\n", " % A point is considered a maximum peak if it has the maximal\n", " % value, and was preceded (to the left) by a value lower by\n", " % DELTA.\n", " \n", " % Eli Billauer, 3.4.05 (Explicitly not copyrighted).\n", " % This function is released to the public domain; Any use is allowed.\n", " \n", " \"\"\"\n", " maxtab = []\n", " mintab = []\n", " \n", " if x is None:\n", " x = arange(len(v))\n", " \n", " v = asarray(v)\n", " \n", " if len(v) != len(x):\n", " sys.exit('Input vectors v and x must have same length')\n", " \n", " if not isscalar(delta):\n", " sys.exit('Input argument delta must be a scalar')\n", " \n", " if delta <= 0:\n", " sys.exit('Input argument delta must be positive')\n", " \n", " mn, mx = Inf, -Inf\n", " mnpos, mxpos = NaN, NaN\n", " \n", " lookformax = True\n", " \n", " for i in arange(len(v)):\n", " this = v[i]\n", " if this > mx:\n", " mx = this\n", " mxpos = x[i]\n", " if this < mn:\n", " mn = this\n", " mnpos = x[i]\n", " \n", " if lookformax:\n", " if this < mx-delta:\n", " maxtab.append((mxpos, mx))\n", " mn = this\n", " mnpos = x[i]\n", " lookformax = False\n", " else:\n", " if this > mn+delta:\n", " mintab.append((mnpos, mn))\n", " mx = this\n", " mxpos = x[i]\n", " lookformax = True\n", "\n", " return array(maxtab), array(mintab)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "ename": "IOError", "evalue": "File surgery.txt does not exist", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mekg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'surgery.txt'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0msep\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'\\t'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindex_col\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheader\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0musecols\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/Users/manuel/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/pandas/io/parsers.pyc\u001b[0m in \u001b[0;36mparser_f\u001b[0;34m(filepath_or_buffer, sep, dialect, compression, doublequote, escapechar, quotechar, quoting, skipinitialspace, lineterminator, header, index_col, names, prefix, skiprows, skipfooter, skip_footer, na_values, na_fvalues, true_values, false_values, delimiter, converters, dtype, usecols, engine, delim_whitespace, as_recarray, na_filter, compact_ints, use_unsigned, low_memory, buffer_lines, warn_bad_lines, error_bad_lines, keep_default_na, thousands, comment, decimal, parse_dates, keep_date_col, dayfirst, date_parser, memory_map, float_precision, nrows, iterator, chunksize, verbose, encoding, squeeze, mangle_dupe_cols, tupleize_cols, infer_datetime_format, skip_blank_lines)\u001b[0m\n\u001b[1;32m 472\u001b[0m skip_blank_lines=skip_blank_lines)\n\u001b[1;32m 473\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 474\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 475\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 476\u001b[0m \u001b[0mparser_f\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/manuel/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/pandas/io/parsers.pyc\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mchunksize\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/manuel/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/pandas/io/parsers.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 564\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 565\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 566\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 567\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 568\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_options_with_defaults\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/manuel/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/pandas/io/parsers.pyc\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 703\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'c'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 704\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 705\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCParserWrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 706\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 707\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'python'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/manuel/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/pandas/io/parsers.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 1070\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'allow_leading_cols'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex_col\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1071\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1072\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_parser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTextReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1073\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1074\u001b[0m \u001b[0;31m# XXX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32mpandas/parser.pyx\u001b[0m in \u001b[0;36mpandas.parser.TextReader.__cinit__ (pandas/parser.c:3173)\u001b[0;34m()\u001b[0m\n", "\u001b[0;32mpandas/parser.pyx\u001b[0m in \u001b[0;36mpandas.parser.TextReader._setup_parser_source (pandas/parser.c:5912)\u001b[0;34m()\u001b[0m\n", "\u001b[0;31mIOError\u001b[0m: File surgery.txt does not exist" ] } ], "source": [ "ekg = pd.read_csv('surgery.txt',sep='\\t', index_col=0, header=0, usecols=(0,1))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'ekg' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m73000\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mwidth\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m10000\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mekg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdiff\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'ekg' is not defined" ] } ], "source": [ "start = 73000\n", "width = 10000\n", "a = ekg.iloc[start:start+width]\n", "b = a.diff()\n", "c = b*b\n", "d = c.copy()\n", "d.EKG = pd.np.convolve(c.EKG.values, np.ones(10), 'same')\n", "rms = np.sqrt(np.mean(np.square(d)))\n", "print 'RMS value:', rms.EKG\n", "e_max,e_min = peakdet(d, rms.EKG)\n", "\n", "\n", "fig = plt.figure(figsize=(10, 10))\n", "ax = fig.add_subplot(211)\n", "a.plot(ax=ax)\n", "\n", "ax = fig.add_subplot(212)\n", "ax.hold(True)\n", "plt.plot(d)\n", "plt.plot(e_max[:,0], e_max[:,1], 'rx')\n", "\n", "fig.tight_layout()\n", "\n", "freq = 1./np.diff(e_max[:,0]*1e-3)\n", "e = np.mean(freq)\n", "print 'mean BPM:', e*60." ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "def get_HR(inData, **kwargs):\n", " b = np.diff(inData) # Differentiate\n", " c = np.square(b) # square\n", " d = np.convolve(c, np.ones(10), 'same') # smooth\n", " # get RMS value to use in the peak detection algorithm\n", " rms = np.sqrt(np.mean(np.square(d)))\n", " # print 'RMS value:', rms.EKG\n", " e_max, e_min = peakdet(d, rms)\n", "\n", " freq = 1./np.diff(e_max[:, 0] * 1e-3)\n", " e = np.mean(freq)\n", " return e * 60." ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(999,)\n", "(999,)\n", "(10,)\n", "711.993888464\n" ] } ], "source": [ "data = ekg.iloc[0:1000].values\n", "data = data.flatten()\n", "print get_HR(data)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "object too deep for desired array", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mekg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mekg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mget_HR\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m\u001b[0m in \u001b[0;36mget_HR\u001b[0;34m(inData, **kwargs)\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdiff\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minData\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Differentiate\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msquare\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# square\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0md\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvolve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mones\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'same'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# smooth\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;31m# get RMS value to use in the peak detection algorithm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mrms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msqrt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msquare\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/manuel/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/numpy/core/numeric.pyc\u001b[0m in \u001b[0;36mconvolve\u001b[0;34m(a, v, mode)\u001b[0m\n\u001b[1;32m 994\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'v cannot be empty'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 995\u001b[0m \u001b[0mmode\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_mode_from_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 996\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mmultiarray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcorrelate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 997\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 998\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mouter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: object too deep for desired array" ] } ], "source": [ "width = 1000\n", "for i in range(0,len(ekg),width):\n", " data = ekg.iloc[i:i+width].values\n", " print get_HR(data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2.0 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }